Abstract

Applications of mode-locked fiber lasers benefit from robust and self-starting mode-locking, spectral tuning, high pulse energy and high average power. All-polarization-maintaining (PM) fiber lasers mode-locked with a phase-biased nonlinear amplifying loop mirror (NALM) have been shown to be very robust and reliably self-starting, and provide either spectral tuning or high pulse energy, but not both. We report on a simple method for concurrent spectral tuning and nanojoule-level pulse energy scaling of an all-PM phase-biased NALM mode-locked Yb:fiber laser, which we demonstrate over a 54 nm tuning range, reaching up to 1.67 nJ pulse energy and 126 mW average power. Unlike other laser configurations, our results show that net normal dispersion is not necessary or optimal for scaling the pulse energy of this type of mode-locked fiber laser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call