Abstract

Modulation of the octahedral crystal field environment of Cr3+ is an effective approach to achieve tunable emission. Here, we prepared a series of broadband MP3O9:Cr3+ (M = Al, Ga, In) near-infrared (NIR) phosphors, and cubic AlP3O9:Cr3+ (APO-c:Cr3+) and monoclinic AlP3O9:Cr3+ (APO-m:Cr3+) phosphors were prepared by controlling the synthesis temperature. The emission wavelength was tuned from 787 nm for APO-c:Cr3+ to 894 nm for monoclinic InP3O9:Cr3+ (IPO:Cr3+) by regulating the M ion and reducing the crystal field intensity. Excitingly, the MP3O9:Cr3+ (M = Al, Ga, In) family shows excellent thermal stability; the emission intensity of APO-c:Cr3+, APO-m:Cr3+ and monoclinic GaP3O9:Cr3+ (GPO:Cr3+) can still maintain 95.6%, 86% and 86% of that at room temperature when heating to 423 K, respectively. An NIR LED device was prepared by incorporating GPO:Cr3+ and a blue light LED, demonstrating the potential application in night vision and non-destructive testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call