Abstract

The conversion of light fields in photonic crystal fibers (PCFs) capitalizes on the dramatic enhancement of several optical nonlinearities. We present here spectrally smooth, highly broadband supercontinuum radiation in a short piece of high-nonlinearity soft-glass PCF. This supercontinuum spans several optical octaves, with a spectral range extending from 350 nm to beyond 3000 nm. The selection of an appropriate propagation-length determines the spectral quality of the supercontinuum generated. Experimentally, we clearly identify two regimes of nonlinear pulse transformation: when the fiber length is much shorter than the dispersion length, soliton propagation is not important and a symmetric supercontinuum spectrum arises from almost pure self-phase modulation. For longer fiber lengths the supercontinuum is formed by the breakup of multiple Raman-shifting solitons. In both regions very broad supercontinuum radiation is produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.