Abstract

A new spectrally selective NbAlN/NbAlON/Si 3N 4 tandem absorber was deposited on copper substrates using a reactive direct current magnetron sputtering system. A high solar absorptance (0.956) and a low emittance (0.07) were achieved by gradually decreasing the refractive index from the substrate to the surface. The tandem absorber was characterized using solar spectrum reflectometer and emissometer, X-ray photoelectron spectroscopy, phase-modulated spectroscopic ellipsometry, atomic force microscopy and micro-Raman spectroscopy techniques. In order to study the thermal stability of the tandem absorbers, they were subjected to heat treatment (in air and vacuum) at different durations and temperatures. The tandem absorber deposited on copper substrate exhibited high solar selectivity in the order of 13–15 even after heat treatment in air up to 500 °C for 2 h. These tandem absorbers also exhibited high thermal stability (450 °C) in air for longer durations (116 h). The onset of oxidation for the tandem absorber deposited on silicon substrates was 650 °C, indicating a high oxidation resistance. The results of the present study indicate the importance of NbAlN/NbAlON/Si 3N 4 tandem absorber for high-temperature solar selective applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.