Abstract

Spectrally selective window provides a positive solution for the sustainable development of buildings in hot regions. In this study, a novel filuis-based spectrally selective design was proposed to achieve the light/heat decoupling of windows. In detail, the cooper ions and chlorophyll were blended in the aqueous solution to efficiently block the near-infrared (NIR) and ultraviolet (UV) energy, whilst maintaining a high visible transmittance. The blended solution was demonstrated to be highly advanced in solar light/heat decoupling, with a high light-to-solar heat gain (LSG) above 2.5. Meanwhile, the weathering assessment of the prepared solution indicates that it can maintain a fairly constant optical transmittance over a period of 8 months. With the light/heat decoupling solution, a triple-layered liquid-filled window (LFW) was conceptualized, and a model was then developed to calculate the window's annual energy-saving performance in a hot and humid city, i.e., Hong Kong. Results demonstrate that the LFW can ensure a feasible luminous that is higher than 40 % and low monthly average solar heat gain coefficient (SHGC) values ranging from 0.24 to 0.26 in all seasons. These features hold great promise for buildings located in hot regions, as they enable low-carbon operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.