Abstract

Spectrally resolved white-light interferometry was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. Verification of the technique's efficacy was substantiated by accurate measurement of the dispersive properties of water and fused silica, which have both been well-characterized in the past by single-wavelength measurement of the refractive index. The dispersion of bovine and rabbit aqueous and vitreous humors was measured from 400 to 1100 nm. In addition, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humors extracted from goat and rhesus monkey eyes. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. The principles of white-light interferometry, including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.