Abstract
We describe a potentially powerful multidimensional technique based on spectrally resolved 2-colour 3-pulse photon echoes in the visible region for probing vibrational and electronic dynamics in complex molecular systems on a femtosecond time scale. Recording of the spectrum of the photon echo signals yields detailed information about the temporal evolution of the amplitude of the nonlinear polarization induced in the sample by the three temporally separated femtosecond laser pulses. Suitable selection of the wavelengths of the three laser pulses allows different sets of energy levels to be selected and the dynamics of the ground and excited states to be separated and investigated. The technique is applied to studies of dynamical processes in a wide range of molecular systems, including the dye molecules Rhodamine 101, Rhodamine B and cresyl violet; the blue emitting semiconductor gallium nitride; semiconductor CdTe/ZnSe quantum dots; and the biomolecules myoglobin and carbonmonoxy myoglobin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.