Abstract

By implementing a scanning near-field optical microscope into the specimen chamber of a scanning electron microscope, cathodoluminescence can be locally detected in the optical near-field. The achievable spatial resolution in this set-up is only limited by the size of the aperture in a coated fibre probe and its separation from the sample, rather than by the energy dissipation volume of the primary electrons and diffusion processes of excess carriers inside the specimen. We demonstrate how electronically active defects in polycrystalline diamond can be distinguished and localized with sub-wavelength lateral resolution by spectral filtering of the cathodoluminescence signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.