Abstract

Fundus imaging has become an essential clinical diagnostic tool in ophthalmology. Current generation scanning laser ophthalmoscopes (SLO) offer advantages over conventional fundus photography and indirect ophthalmoscopy in terms of light efficiency and contrast. As a result of the ability of SLO to provide rapid, continuous imaging of retinal structures and its versatility in accommodating a variety of illumination wavelengths, allowing for imaging of both endogenous and exogenous fluorescent contrast agents, SLO has become a powerful tool for the characterization of retinal pathologies. However, common implementations of SLO, such as the confocal scanning laser ophthalmoscope (CSLO) and line-scanning laser ophthalmoscope (LSLO), require imaging or multidimensional scanning elements which are typically implemented in bulk optics placed close to the subject eye. Here, we apply a spectral encoding technique in one dimension combined with single-axis lateral scanning to create a spectrally encoded confocal scanning laser ophthalmoscope (SECSLO) which is fully confocal. This novel implementation of the SLO allows for high contrast, high resolution in vivo human retinal imaging with image transmission through a single-mode optical fiber. Furthermore, the scanning optics are similar and the detection engine is identical to that of current-generation spectral domain optical coherence tomography (SDOCT) systems, potentially allowing for a simplistic implementation of a joint SECSLO-SDOCT imaging system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call