Abstract

Here we report the spectrally and spatially resolved cathodoluminescence of diamond nanoparticles using focused fast electron beams in a transmission electron microscope. We demonstrate the possibility of quickly detecting various individual colour centres of different kinds on wide areas (several micrometres square) contained in nanoparticles separated by subwavelength distances. Among them, nanoparticles containing one or more neutral nitrogen-vacancy (NV0) intensity maxima have been seen, attributable to individual emitters. Thanks to a spatial resolution which is solely limited by charge carrier diffusion in the case of a fast electron (80 keV) setup, the spectra of two individual NV0 emitters separated by 80 nm inside a nanoparticle have been spatially discerned. A shift of the zero phonon line (ZPL) between the two emitters, which we attribute to internal stress, is shown to arise even within the same nanoparticle. Detailed emission spectra (ZPL, phonon lines and Huang–Rhys factor, directly linked to the relaxation energy of the colour centre) in 51 individual NV0 centres have been measured in 39 particles. The ZPL and Huang–Rhys factor are found to be measurably dispersed, while the phonon energies keep constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call