Abstract

We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S d - 1 . The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403–417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: <http://arxiv.org/abs/math-ph/0608035>]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously cooling and heated granular fluids, Granular Matter 1(57) (1998); M.H. Ernst, R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails, Journal of Statistical Physics 109 (2002) 407–432; S.J. Moon, M.D. Shattuck, J. Swift, Velocity distributions and correlations in homogeneously heated granular media, Physical Review E 64 (2001) 031303; I.M. Gamba, S. Rjasanow, W. Wagner, Direct simulation of the uniformly heated granular Boltzmann equation, Mathematical and Computer Modelling 42 (2005) 683–700] and rigorously proven in Gamba et al. [I.M. Gamba, V. Panferov, C. Villani, On the Boltzmann equation for diffusively excited granular media, Communications in Mathematical Physics 246 (2004) 503–541(39)] and [A.V. Bobylev, I.M. Gamba, V. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, Journal of Statistical Physics 116 (2004) 1651–1682].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.