Abstract
Emerging commercial and academic tools are regularly being applied to the design of road and race cars, but there currently are no well-established benchmark cases to study the aerodynamics of race car wings in ground effect. In this paper we propose a new test case, with a relatively complex geometry, supported by the availability of CAD model and experimental results. We refer to the test case as the Imperial Front Wing, originally based on the front wing and endplate design of the McLaren 17D race car. A comparison of different resolutions of a high fidelity spectral/hp element simulation using under-resolved DNS/implicit LES approach with fourth and fifth polynomial order is presented. The results demonstrate good correlation to both the wall-bounded streaklines obtained by oil flow visualization and experimental PIV results, correctly predicting key characteristics of the time-averaged flow structures, namely intensity, contours and locations. This study highlights the resolution requirements in capturing salient flow features arising from this type of challenging geometry, providing an interesting test case for both traditional and emerging high-fidelity simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering and Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.