Abstract

Spectral variation is profound in remotely sensed images due to variable imaging conditions. The wide presence of such spectral variation degrades the performance of hyperspectral analysis, such as classification and spectral unmixing. In this letter, $\ell_{1}$ -based low-rank matrix approximation is proposed to alleviate spectral variation for hyperspectral image analysis. Specifically, hyperspectral image data are decomposed into a low-rank matrix and a sparse matrix, and it is assumed that intrinsic spectral features are represented by the low-rank matrix and spectral variation is accommodated by the sparse matrix. As a result, the performance of image data analysis can be improved by working on the low-rank matrix. Experiments on benchmark hyperspectral data sets demonstrate the performance of classification, and spectral unmixing can be clearly improved by the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.