Abstract

Theoretical models for the ionization of trace elements in a strong stellar wind by a compact binary X-ray source and for the resulting orbital phase dependence of the emergent soft X-ray spectra and the profiles of ultraviolet resonance lines are presented. Model results agree qualitatively with the X-ray and ultraviolet spectra of the system 4U 0900-40/HD 77581 and explain the suppression of the absorption profiles of the Si IV upsilon 1394 and C IV upsilon 1548 lines when the X-ray sources is in front of the star. The model predicts that the absorption profiles of the N V upsilon 1239 and O VI upsilon 1032 lines will be enhanced rather than suppressed during this orbital phase. We predict phase-dependent linear polarization in the resonance lines profiles. Future observations of these phase dependent effects in early-type binary X-ray systems may be used to investigate the dynamics of stellar winds and their interactions with the X-ray source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.