Abstract

In this paper, we address a spectral unmixing problem for hyperspectral images by introducing multiple-kernel learning (MKL) coupled with support vector machines. To effectively solve issues of spectral unmixing, an MKL method is explored to build new boundaries and distances between classes in multiple-kernel Hilbert space (MKHS). Integrating reproducing kernel Hilbert spaces (RKHSs) spanned by a series of different basis kernels in MKHS is able to provide increased power in handling general nonlinear problems than traditional single-kernel learning in RKHS. The proposed method is developed to solve multiclass unmixing problems. To validate the proposed MKL-based algorithm, both synthetic data and real hyperspectral image data were used in our experiments. The experimental results demonstrate that the proposed algorithm has a strong ability to capture interclass spectral differences and improve unmixing accuracy, compared to the state-of-the-art algorithms tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call