Abstract

High-index dielectric subwavelength structures and metasurfaces are capable of enhancing light-matter interaction by orders of magnitude via geometry-dependent optical resonances. This enhancement, however, comes with a fundamental limitation of a narrow spectral range of operation in the vicinity of one or few resonant frequencies. Here, this limitation is tackled by introducing an innovative and practical approach to achieve spectrally tunable enhancement of light-matter interaction with resonant metasurfaces. Resonance-gradient metasurfaces are designed and fabricated with varying geometrical parameters that translate into resonant frequencies dependence on one of the coordinates of the metasurface. The metasurfaces are composed of bone-like nanoresonators, which are made of germanium and support high-quality optical resonances in the mid-IR spectral range. The concept is applied to observe the resonant enhancement of the third and fifth harmonics generated from the gradient metasurfaces being used in conjunction with a tunable excitation laser to provide a wide spectral coverage of resonantly-enhanced tunable generation of multiple opticalharmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.