Abstract
The spectral properties of a class of non-self-adjoint second-order elliptic operators with indefinite weight functions on unbounded domains Ω are investigated. It is shown, under an abstract regularity assumption, that the non-real spectrum of the associated elliptic operators in L2(Ω) is bounded. In the special case where Ω = ℝn decomposes into subdomains Ω+ and Ω− with smooth compact boundaries and the weight function is positive on Ω+ and negative on Ω−, it turns out that the non-real spectrum consists only of normal eigenvalues that can be characterized with a Dirichlet-to-Neumann map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.