Abstract
BackgroundOddball paradigms are frequently used to study auditory discrimination by comparing event-related potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound. Previous research has established that such paradigms, such as the mismatch response or mismatch negativity, are useful for examining auditory processes in young children and infants across various sleep and attention states. The extent to which oddball ERP responses may reflect subtle discrimination effects, such as speech discrimination, is largely unknown, especially in infants that have not yet acquired speech and language.ResultsMismatch responses for three contrasts (non-speech, vowel, and consonant) were computed as a spectral-temporal probability function in 24 infants, and analyzed at the group level by a modified multidimensional scaling. Immediately following an onset gamma response (30–50 Hz), the emergence of a beta oscillation (12–30 Hz) was temporally coupled with a lower frequency theta oscillation (2–8 Hz). The spectral-temporal probability of this coupling effect relative to a subsequent theta modulation corresponds with discrimination difficulty for non-speech, vowel, and consonant contrast features.DiscussionThe theta modulation effect suggests that unexpected sounds are encoded as a probabilistic measure of surprise. These results support the notion that auditory discrimination is driven by the development of brain networks for predictive processing, and can be measured in infants during sleep. The results presented here have implications for the interpretation of discrimination as a probabilistic process, and may provide a basis for the development of single-subject and single-trial classification in a clinically useful context.ConclusionAn infant’s brain is processing information about the environment and performing computations, even during sleep. These computations reflect subtle differences in acoustic feature processing that are necessary for language-learning. Results from this study suggest that brain responses to deviant sounds in an oddball paradigm follow a cascade of oscillatory modulations. This cascade begins with a gamma response that later emerges as a beta synchronization, which is temporally coupled with a theta modulation, and followed by a second, subsequent theta modulation. The difference in frequency and timing of the theta modulations appears to reflect a measure of surprise. These insights into the neurophysiological mechanisms of auditory discrimination provide a basis for exploring the clinically utility of the MMRTF and other auditory oddball responses.
Highlights
Oddball paradigms are frequently used to study auditory discrimination by comparing event-related potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound
Results from this study suggest that brain responses to deviant sounds in an oddball paradigm follow a cascade of oscillatory modulations
This cascade begins with a gamma response that later emerges as a beta synchronization, which is temporally coupled with a theta modulation, and followed by a second, subsequent theta modulation
Summary
Oddball paradigms are frequently used to study auditory discrimination by comparing event-related potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound. Previous research has established that such paradigms, such as the mismatch response or mismatch negativity, are useful for examining auditory processes in young children and infants across various sleep and attention states. If the task is meant to assess pre-perceptual processing, the participant is usually asked to ignore the sounds and/or to attend to a separate task. Because these oddball responses can be assessed in the absence of a behavioral component, such a task might provide a solution to assessing discrimination in young infants. Testing during sleep reduces the potential influence of attention effects, it has the added benefit of reducing data loss associated with movement artifacts
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.