Abstract

Hyperspectral images (HSI) find extensive application across numerous domains of study. Spectral superresolution (SSR) refers to reconstructing HSIs from readily available RGB images using the mapping relationships between RGB images and HSIs. In recent years, convolutional neural networks (CNNs) have become widely adopted in SSR research, primarily because of their exceptional ability to extract features. However, most current CNN-based algorithms are weak in terms of extracting the spectral features of HSIs. While certain algorithms can reconstruct HSIs through the fusion of spectral and spatial data, their practical effectiveness is hindered by their substantial computational complexity. In light of these challenges, we propose a lightweight network, Transformer with convolutional spectral self-attention (TCSSA), for SSR. TCSSA comprises a CNN-Transformer encoder and a CNN-Transformer decoder, in which the convolutional spectral self-attention blocks (CSSABs) are the basic modules. Multiple cascaded encoding and decoding modules within TCSSA facilitate the efficient extraction of spatial and spectral contextual information from HSIs. The convolutional spectral self-attention (CSSA) as the basic unit of CSSAB combines CNN with self-attention in the transformer, effectively extracting both spatial local features and global spectral features from HSIs. Experimental validation of TCSSA’s effectiveness is performed on three distinct datasets: GF5 for remote sensing images along with CAVE and NTIRE2022 for natural images. The experimental results demonstrate that the proposed method achieves a harmonious balance between reconstruction performance and computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.