Abstract

Super-resolution microscopy refers to a powerful set of imaging techniques that overcome the diffraction limit. Some of these techniques, the importance of which was recognized by the 2014 Nobel Prize for chemistry, are based on the concept of image reconstruction by spatially sparse sampling. Here, we introduce the concept of super-resolution spectroscopy based on sparse sampling in the frequency domain, and show that this can be naturally achieved using a random laser source. In its chaotic regime, the emission spectrum of a random laser features sharp spikes at uncorrelated frequencies that are sparsely distributed over the emission bandwidth. These narrow lasing modes probe stochastically the spectral response of a sample, allowing it to be reconstructed with a resolution exceeding that of the spectrometer. We envision that the proposed technique will inspire a new generation of simple, cheap, high-resolution spectroscopy tools with a reduced footprint. Spectral super-resolution spectroscopy is realized by exploiting a random laser that chaotically produces sharply spiked spectral lines, representing a new generation of simple, compact and cost-effective spectroscopy tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.