Abstract

We investigate the optical properties of periodic composites containing metamaterial inclusions in a normal material matrix. We consider the case when these inclusions have sharp corners and, following Hetherington and Thorpe, use analytic results to argue that it is then possible to deduce the shape of the corner (its included angle) by measurements of the absorptance of such composites when the scale size of the inclusions and period cell is much finer than the wavelength. These analytic arguments are supported by highly accurate numerical results for the effective permittivity function of such composites as a function of the permittivity ratio of inclusions to the matrix. The results show that this function has a continuous spectral component with limits independent of the area fraction of inclusions, and with the same limits for both square and staggered square arrays. For staggered arrays where the squares are almost touching, the absorption spectrum is an extremely sensitive probe of the inclusion separation distance and acts like a Vernier scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.