Abstract

We compare the statistical fluctuation properties of the baryon and meson experimental mass spectra with those obtained from theoretical models (quark models and lattice QCD). We find that for the experimental spectra the statistical properties are close to those predicted by random matrix theory for chaotic systems, while for the theoretical ones they are in general closer to those predicted for integrable systems and safely incompatible with those of chaotic systems. We stress the importance of the agreement of the fluctuation properties between experiment and theoretical models, as they determine the dynamical regime and the complexity of the real interactions. We emphasize the new statistical method we use, adapted to properly analyze the fluctuation properties for very short spectral sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.