Abstract

A planar viscous shock profile of a hyperbolic–parabolic system of conservation laws is a steady solution in a moving coordinate frame. The asymptotic stability of viscous profiles and the related vanishing-viscosity limit are delicate questions already in the well understood case of one space dimension and even more so in the case of several space dimensions. It is a natural idea to study the stability of viscous profiles by analyzing the spectrum of the linearization about the profile. The Evans function method provides a geometric dynamical-systems framework to study the eigenvalue problem. In this approach eigenvalues correspond to zeros of an essentially analytic function \({\mathcal{E}(\rho\lambda,\rho\omega)}\) which detects nontrivial intersections of the so-called stable and unstable spaces, that is, spaces of solutions that decay on one (“−∞”) or the other side (“ + ∞”) of the shock wave, respectively. In a series of pioneering papers, Kevin Zumbrun and collaborators have established in various contexts that spectral stability, that is, the non-vanishing of \({\mathcal{E}(\rho\lambda,\rho\omega)}\) and the non-vanishing of the Lopatinski–Kreiss–Majda function Δ(λ,ω), imply nonlinear stability of viscous shock profiles in several space dimensions. In this paper we show that these conditions hold true for small amplitude extreme shocks under natural assumptions. This is done by exploiting the slow-fast nature of the small-amplitude limit, which was used in a previous paper by the authors to prove spectral stability of small-amplitude shock waves in one space dimension. Geometric singular perturbation methods are applied to decompose the stable and unstable spaces into subbundles with good control over their limiting behavior. Three qualitatively different regimes are distinguished that relate the small strength \({\epsilon}\) of the shock wave to appropriate ranges of values of the spectral parameters (ρλ, ρω). Various rescalings are used to overcome apparent degeneracies in the problem caused by loss of hyperbolicity or lack of transversality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.