Abstract

We prove a stability theorem for the eigenvalues of general non-negative self-adjoint linear operators with compact resolvents and by applying it we prove a sharp stability result for the dependence of the eigenvalues of second order uniformly elliptic linear operators with homogeneous Neumann boundary conditions upon domain perturbation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.