Abstract

Supplementary information, such as multi-temporal spectral data and textural features, has the potential to improve land cover classification accuracy. However, given the larger volumes of remote sensing data, it is difficult to utilize all the features of remote sensing big data having different times and spatial resolutions. Inefficiency is also a large problem when dealing with large area land cover mapping. In this study, a new mode of incorporating spatial and temporal dependencies in a complex region employing the random forests (RFs) classifier was utilized. To map land covers, spring and autumn spectral images and their spectral indexes, textural features obtained from Landsat 5 were selected, and an importance measure variable was used to reduce the data’s dimension. In addition to randomly selecting the variable, we used random sampling to furthest decrease the generalization error in RF. The results showed that utilizing random sampling, multi-temporal spectral image and texture features, the classification of the Wuhan urban agglomeration, China, using RF performed well. The RF algorithm yielded an overall accuracy of 89.2% and a Kappa statistic of 0.8522, indicating high model performance. In addition, the variable importance measures demonstrated that the type of textural features was extremely important for intra-class separability. The RF model has transitivity. The algorithm can be extended by choosing a set of appropriate features for signature extension over large areas or in time-series of Landsat imagery. Land cover mapping might be more economical and efficient if no-cost imagery is used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call