Abstract

Explosive growth of applications in hyperspectral image (HSI) has made HSI classification a hot topic in the remote sensing community. The key to improve classification accuracy is how to make full use of the spectral and spatial information. We combine k-nearest neighbor (KNN) algorithm with guided filter which can extract spatial context information and denoise the classification results by edge-preserving filtering. To solve the problem of dimension disaster, we also take dimensionality reduction into account for HSI classification. To verify the feasibility of our proposed methods, we evaluate the performance over four widely used hyperspectral data sets. The experimental results show that with only 5% of samples, our method obtained better performance than improved support vector machine and KNN methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.