Abstract

In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover category. In the recent past, convolutional neural network (CNN)-based HSI classification methods have greatly improved performance due to their superior ability to represent features. However, these methods have limited ability to obtain deep semantic features, and as the layer’s number increases, computational costs rise significantly. The transformer framework can represent high-level semantic features well. In this article, a spectral–spatial feature tokenization transformer (SSFTT) method is proposed to capture spectral–spatial features and high-level semantic features. First, a spectral–spatial feature extraction module is built to extract low-level features. This module is composed of a 3-D convolution layer and a 2-D convolution layer, which are used to extract the shallow spectral and spatial features. Second, a Gaussian weighted feature tokenizer is introduced for features transformation. Third, the transformed features are input into the transformer encoder module for feature representation and learning. Finally, a linear layer is used to identify the first learnable token to obtain the sample label. Using three standard datasets, experimental analysis confirms that the computation time is less than other deep learning methods and the performance of the classification outperforms several current state-of-the-art methods. The code of this work is available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/zgr6010/HSI_SSFTT</uri> for the sake of reproducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.