Abstract

Time resolved atomic emission, atomic absorbance, and laser-induced atomic fluorescence measurements of a millisecond pulsed glow discharge, made perpendicular to the insertion probe, provide temporal profiles of 1s5 (3P2) and 1s3 (3P0) metastable argon atom populations. Acquisition of these profiles at different spatial positions in the plasma provides data from which two-dimensional spatial plots of relative populations are constructed. Each map, the result of 368 individual pulse profiles, provides insight into the production of metastable argon atoms as a function of time and position within the plasma. During power application, intensities plateau after 3 ms as the plasma reaches a steady state condition. Metastable argon atoms are most abundant 1–2 mm above the cathode surface during this time. Excitation mechanisms such as electron excitation and fast atom/ion impact appear to dominate in this temporal regime. In contrast, argon ion–electron recombination dominates metastable formation after pulse termination. The relative population maximum for metastable argon atoms in the afterpeak shifts to 5–9 mm above the cathode surface. This shift should impact signals for analyte species generated by Penning processes in the plasma. Absorption and fluorescence measurements of the 3P2 (11.55 eV) and the 3P0 (11.72 eV) metastable argon atom states indicate possible differences in the populations of these two states between the plateau and afterpeak time regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call