Abstract

Abstract. Verifying anthropogenic carbon dioxide (CO2) emissions globally is essential to inform about the progress of institutional efforts to mitigate anthropogenic climate forcing. To monitor localized emission sources, spectroscopic satellite sensors have been proposed that operate on the CO2 absorption bands in the shortwave-infrared (SWIR) spectral range with ground resolution as fine as a few tens of meters to about a hundred meters. When designing such sensors, fine ground resolution requires a trade-off towards coarse spectral resolution in order to achieve sufficient noise performance. Since fine ground resolution also implies limited ground coverage, such sensors are envisioned to fly in fleets of satellites, requiring low-cost and simple design, e.g., by restricting the spectrometer to a single spectral band. Here, we use measurements of the Greenhouse Gases Observing Satellite (GOSAT) to evaluate the spectral resolution and spectral band selection of a prospective satellite sensor with fine ground resolution. To this end, we degrade GOSAT SWIR spectra of the CO2 bands at 1.6 (SWIR-1) and 2.0 µm (SWIR-2) to coarse spectral resolution, without a further addition of noise, and we evaluate single-band retrievals of the column-averaged dry-air mole fractions of CO2 (XCO2) by comparison to ground truth provided by the Total Carbon Column Observing Network (TCCON) and by comparison to global “native” GOSAT retrievals with native spectral resolution and spectral band selection. Coarsening spectral resolution from GOSAT's native resolving power of >20 000 to the range of 700 to a few thousand makes the scatter of differences between the SWIR-1 and SWIR-2 retrievals and TCCON increase moderately. For resolving powers of 1200 (SWIR-1) and 1600 (SWIR-2), the scatter increases from 2.4 (native) to 3.0 ppm for SWIR-1 and 3.3 ppm for SWIR-2. Coarser spectral resolution yields only marginally worse performance than the native GOSAT configuration in terms of station-to-station variability and geophysical parameter correlations for the GOSAT–TCCON differences. Comparing the SWIR-1 and SWIR-2 configurations to native GOSAT retrievals on the global scale, however, reveals that the coarse-resolution SWIR-1 and SWIR-2 configurations suffer from some spurious correlations with geophysical parameters that characterize the light-scattering properties of the scene such as particle amount, size, height and surface albedo. Overall, the SWIR-1 and SWIR-2 configurations with resolving powers of 1200 and 1600 show promising performance for future sensor design in terms of random error sources while residual errors induced by light scattering along the light path need to be investigated further. Due to the stronger CO2 absorption bands in SWIR-2 than in SWIR-1, the former has the advantage that measurement noise propagates less into the retrieved XCO2 and that some retrieval information on particle scattering properties is accessible.

Highlights

  • Accurate and spatiotemporally densely resolved information on localized carbon dioxide (CO2) emission sources such as power plants is crucial to inform about CO2 emission reduction targets that national, regional and municipal administrations worldwide have committed to through their climate action plans

  • We degrade Gases Observing Satellite (GOSAT) SWIR spectra of the CO2 bands at 1.6 (SWIR-1) and 2.0 μm (SWIR-2) to coarse spectral resolution, without a further addition of noise, and we evaluate single-band retrievals of the column-averaged dry-air mole fractions of CO2 (XCO2) by comparison to ground truth provided by the Total Carbon Column Observing Network (TCCON) and by comparison to global “native” GOSAT retrievals with native spectral resolution and spectral band selection

  • Satellite remote sensing of the column-averaged dry-air mole fractions of CO2 (XCO2) could contribute to providing such crucial information if satellite design succeeds in combining fine ground resolution with sufficient precision and if satellite concepts are simple enough to allow for a fleet of sensors enabling broad coverage of the globe

Read more

Summary

Introduction

Accurate and spatiotemporally densely resolved information on localized carbon dioxide (CO2) emission sources such as power plants is crucial to inform about CO2 emission reduction targets that national, regional and municipal administrations worldwide have committed to through their climate action plans. Global XCO2 concentration measurements from space were pioneered by the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY mission, SCIAMACHY (e.g., Burrows et al, 1995; Reuter et al, 2010; Schneising et al, 2013), with ground resolution of ∼ 60 km × 30 km (Bovensmann et al, 1999). Finer ground resolution (with sparse sampling, though) was subsequently achieved by the Greenhouse Gases Observing Satellite (GOSAT, 10.5 km diameter ground footprint) (Kuze et al, 2009, 2016) and the Orbiting Carbon Observatory (OCO-2, 1.3 km × 2.3 km ground footprint) (Crisp et al, 2008, 2017). Urban carbon dioxide signals have been detected by these instruments, for example in the

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call