Abstract

Two microring resonators, one with gain and one with loss, coupled to each other and to a bus waveguide, create an effective non-Hermitian potential for light propagating in the waveguide. Due to geometry, the coupling for each microring resonator yields two counter-propagating modes with equal frequencies. We show that such a system enables implementation of many types of scattering peculiarities. The spectral singularities, which are either the second or fourth order, separate parameter regions where the spectrum is either purely real or composed of complex eigenvalues; hence, they represent the points of the phase transition. By modifying the gain-loss relation for the resonators, such an optical scatterer can act as a laser, as a coherent perfect absorber, be unidirectionally reflectionless or transparent, and support bound states either growing or decaying in time. These characteristics are observed for a discrete series of the incident-radiation wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.