Abstract
We study optical spectral singularities of a weakly nonlinear ‐symmetric bilinear planar slab of optically active material. In particular, we derive the lasing threshold condition and calculate the laser output intensity. These reveal the following unexpected features of the system: (1) for the case that the real part of the refractive index η of the layers are equal to unity, the presence of the lossy layer decreases the threshold gain; (2) for the more commonly encountered situations when is much larger than the magnitude of the imaginary part of the refractive index, the threshold gain coefficient is a function of η that has a local minimum. The latter is in sharp contrast to the threshold gain coefficient of a homogeneous slab of gain material which is a decreasing function of η. We use these results to comment on the effect of nonlinearity on the prospects of using this system as a coherence perfect absorption‐laser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.