Abstract

The C4 multiplet proton resonances of glutamate (Glu) around 2.35 ppm and glutamine (Gln) around 2.45 ppm usually overlap in MR spectra, particularly at low- and mid-field strengths (1.5-4.7T). A spectral simplification approach is introduced that provides unobstructed Glu and Gln measurement using a standard STEAM localization sequence with optimized interpulse timings. The underlying idea is to exploit the dependence of response of a coupled spin system on the echo time (TE) and mixing time (TM) to find an optimum timing set (TE, TM), at which the outer-wings of C4 "pseudo-triplet" proton resonances of Glu and Gln are significantly suppressed while the central peaks are maintained. The spectral overlap is thus resolved as the overlap exists exclusively at the outer-wings and the central peaks are readily separated due to the approximate 0.1-ppm difference in chemical shift. Density matrix simulation for Glu, Gln, and other overlapping metabolites at 2.3-2.5 ppm was conducted to predict the optimum timing sets. The simulated, phantom, and in vivo results demonstrated that the C4 multiplet proton resonances of Glu and Gln can be resolved for unobstructed detection at 3T, 4T, and 4.7T. For simplicity, only simulated data are illustrated at 7T and 9.4T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.