Abstract

Despite their importance in diverse chemical and biochemical processes, low-barrier hydrogen bonds remain elusive targets to classify and interpret spectroscopically. Here the correlated nature of hydrogen bonding and proton transfer in the low-barrier regime has been probed for the ground and excited electronic states of 6-hydroxy-2-formylfulvene by acquiring jet-cooled fluorescence spectra of the parent and monodeuterated isotopologs. While excited-state profiles reveal regular vibronic patterns devoid of obvious dynamical signatures, their ground-state counterparts display a radically altered energy landscape characterized by spectral bifurcations comparable in magnitude to typical vibrational spacings (>100 cm-1). Quantitative analyses yield unusual deuterium kinetic isotope effects that straddle limiting values attributed to above-barrier vibration and below-barrier tunneling of the proton adjoining donor/acceptor sites. Our findings provide compelling experimental evidence for ultrafast hydron-migration events commensurate with the onset of low-barrier hydrogen bonding and afford a trenchant glimpse of molecular phenomena taking place at the "tipping point" between disparate dynamical regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call