Abstract
The optical power spectrum is the prime observable to dissect, understand, and design the long- time behavior of small and large arrays of optically coupled semiconductor lasers. A long-standing issue has been identified within the literature of injection locking in photonic oscillators: first how the thickness of linewidth and the lineshape spectral envelope correlates with the deterministic evolution of the monochromatic injected laser oscillator and second how the presence of noise and the typically dense proximity in phase space of coexisting limit cycles of the coupled system are shaping and influencing the overall spectral behavior. In addition, we are critically interested in the regions where the basin of attraction has a fractal-like structure, still, the long-time orbits are P1 (period 1) and/or P3 (period 3) limit cycles. Numerically computed evidence shows that, when the coupled system lives in the regions of coexisting isolas and four-wave mixing (FWM) limit cycles, the overall optical power spectrum is deeply imprinted by a strong influence from the underlying noise sources. A particularly intriguing observation in this region of parameter space that we examine is that the isolas draw most of the trajectories on its phase space path.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.