Abstract
We perform spectroscopic measurements of electromagnetically induced transparency (EIT) in a strongly interacting Rydberg gas, and observe a significant spectral shift of the transparency from the single-atom EIT resonance as well as a spectral dephasing of the same order. We characterize the shift and dephasing as a function of atomic density, probe Rabi frequency, and principal quantum number of Rydberg states, and demonstrate that the observed spectral shift and dephasing are reduced if the size of a Gaussian atomic cloud is increased. We simulate our experiment with a semi-analytical model, which gives results in good agreement with our experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.