Abstract

This paper studies the design of signaling waveforms for time-hopping impulse radio (TH-IR) with limits on the power spectral density. Such restrictions are imposed by the spectral mask prescribed by frequency regulators for ultra-wideband (UWB) signals. The "conventional" TH-IR system with pulse-position modulation and time-hopping multiple access gives rise to spectral lines that either violate the regulations, or require a significant power backoff. To remedy this situation, we propose the use of polarity randomization, which eliminates the spectral lines and also leads to a smoothing of the continuous part of the spectrum. We analyze different variants of the polarity randomization, considering short and long randomization sequences, as well as symbol-based or pulse-based randomization. We analyze the effect of this technique on both pulse position modulation and binary phase-shift keying modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call