Abstract
We demonstrate that spectral selective photocatalytic multilayer films can be tailored such that they can harness the full solar spectrum for enhanced photocatalytic gas-phase oxidation of acetaldehyde. Thin films of anatase TiO2 were deposited on a thin solar absorber TiAlN film to fabricate bilayer TiO2/TiAlN films by dc magnetron sputtering on aluminium substrates. The structural and optical properties of the films were characterized by X-ray diffraction and Raman spectroscopy. The reaction rate and quantum yield for acetaldehyde removal was measured and an almost tenfold enhancement of the quantum yield was observed for the TiO2/TiAlN films compared with the single TiO2 film, on par with enhancements achieved with new heterojunction photocatalysts. The results were interpreted by a temperature-induced change of the reaction kinetics. Absorption of simulated solar light illumination resulted in a temperature increase of the TIAlN film that was estimated to be at most 126 K. We show that a concomitant temperature increase of the top layer TiO2 by 100 K shifts the water gas-surface equilibrium from multilayer to submonolayer coverage. We propose that this is the main reason for the observed enhancement of the photocatalytic activity, whereby gas phase molecules may come in direct contact with free surface sites instead of having to diffuse through a thin water film. The implications of the results for judicious control of temperature and relative humidity for efficient gas-phase photocatalysis and exploitation of selective solar absorbing films are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.