Abstract

Constructing a reliable affinity matrix is crucial for spectral segmentation. In this paper, we define a technique to create a reliable affinity matrix for the application to spectral segmentation. We propose an affinity model based on the minimum barrier distance (MBD). First, the image is over-segmented into superpixels; then the subset of the pixels, located in the center of these superpixels, is used to compute the MBD-based affinities of the original image, with particular care taken to avoid a strong boundary, as described in the classical model. To deal with images with faint object and random or “clutter” background, we present gradient data that are integrated with the MBD data. To capture different perceptual grouping cues, the completed affinity model includes MBD, color, and spatial cues of the image. Finally, spectral segmentation is implemented at the superpixel level to provide an image segmentation result with pixel granularity. Experiments using the Berkeley image segmentation database validate the effectiveness of the proposed method. Covering, PRI, VOI, and the F-measure are used to evaluate the results relative to several state-of-the-art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.