Abstract
Hyperspectral images (HSIs) are crucial for many research works. Spectral super-resolution (SSR) is a method used to obtain high-spatial-resolution (HR) HSIs from HR multispectral images. Traditional SSR methods include model-driven algorithms and deep learning. By unfolding a variational method, this article proposes an optimization-driven convolutional neural network (CNN) with a deep spatial-spectral prior, resulting in physically interpretable networks. Unlike the fully data-driven CNN, auxiliary spectral response function (SRF) is utilized to guide CNNs to group the bands with spectral relevance. In addition, the channel attention module (CAM) and the reformulated spectral angle mapper loss function are applied to achieve an effective reconstruction model. Finally, experiments on two types of data sets, including natural and remote sensing images, demonstrate the spectral enhancement effect of the proposed method, and also, the classification results on the remote sensing data set verified the validity of the information enhanced by the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.