Abstract
A Lindblad master equation for a harmonic oscillator, which describes the dynamics of an open system, is formally solved. The solution yields the spectral resolution of the Liouvillian, that is, all eigenvalues and eigenprojections are obtained. This spectral resolution is discussed in depth in the context of the biorthogonal system and the rigged Hilbert space, and the contribution of each eigenprojection to expectation values of physical quantities is revealed. We also construct the ladder operators of the Liouvillian, which clarify the structure of the spectral resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.