Abstract

One step in the conventional analysis of extracellularly recorded neuronal data is spike sorting, which separates electrical signal into action potentials from different neurons. Because spike sorting involves human judgment, it can be subjective and time intensive, particularly for large sets of neurons. Here we propose a simple, automated way to construct alternative representations of neuronal activity, called spectral representation (SR). In this approach, neuronal spikes are mapped to a discrete space of spike waveform features and time. Spectral representation enables us to find single-unit stimulus-related changes in neuronal activity without spike sorting. We tested the ability of this method to predict stimuli using both simulated data and experimental data from an auditory mapping study in anesthetized marmoset monkeys. We find that our approach produces more accurate classification of stimuli than spike-sorted data for both simulated and experimental conditions. Furthermore, this method lends itself to automated analysis of extracellularly recorded neuronal ensembles. Additionally, we suggest ways in which these representations can be readily extended to assist in spike sorting and the evaluation of single-neuron peri-stimulus time histograms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.