Abstract
In this paper, a Cauchy problem for the time fractional advection–dispersion equation (TFADE) is investigated. Such a problem is obtained from the classical advection–dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α ( 0 < α ≤ 1 ) . We show that the Cauchy problem of TFADE is severely ill-posed and further apply a spectral regularization method to solve it based on the solution given by the Fourier method. The convergence estimate is obtained under a priori bound assumptions for the exact solution. Numerical examples are given to show the effectiveness of the proposed numerical method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.