Abstract

AbstractWhen measuring surface seismic data, an accurate attenuation estimation method is necessary to compensate for the energy loss and phase distortion of seismic waves, and is also beneficial for further quantitative amplitude analyses and reservoir parameter predictions. For conventional Q-estimation methods (such as the log spectral-ratio (LSR) method and attenuated traveltime tomography), accuracy may be affected by the differences between the overburden ray paths of two selected reflections (we call it the overburden effect). In this study, we design a more accurate Q-tomography method to estimate Q-values (both in the overburden and target layer simultaneously) without overburden assumptions. We address the overburden effect by using an inversion method, which allows us to separate attenuation effects from the overburden through the traveltime differences in the tomography grid cells. We test the method on synthetic data and prove its feasibility and effectiveness by applying it to field data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.