Abstract
We present the Clenshaw–Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw–Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order to exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N3) planewave results. Finally, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.