Abstract

We study the spectrum of unbounded J -self-adjoint block operator matrices. In particular, we prove enclosures for the spectrum, provide a sucient condition for the spectrum being real and derive variational principles for certain real eigenvalues even in the presence of non-real spectrum. The latter lead to lower and upper bounds and asymptotic estimates for eigenvalues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.