Abstract
We showed in a recent study that topical retinyl palmitate prevented UV-B-induced DNA damage and erythema in humans. Given that retinyl palmitate is a precursor of retinoic acid, the biological form of vitamin A that acts through nuclear receptors, we wondered whether these protective effects toward UV-B exposure were either receptor dependent or linked to other properties of the retinoid molecule such as its spectral properties. We determined the epidermal retinoid profile induced by topical retinoic acid in hairless mice and analyzed its effect on markers of DNA photodamage (thymine dimers) and apoptosis following acute UV-B exposure; we compared these effects to those induced by other natural topical retinoids (retinaldehyde, retinol and retinyl palmitate) which do not directly activate the retinoid receptors. We then analyzed the direct action of these retinoids on UV-B-induced DNA damage and apoptosis in cultured A431 keratinocytes. Topical retinoic acid significantly decreased (approximately 50%) the number of apoptotic cells, as well as the formation of thymine dimers in the epidermis of mice exposed to acute UV-B. Interestingly, the other topical retinoids decreased apoptosis and DNA damage in a similar way. On the other hand, neither retinoic acid nor the other retinoids interfered with the apoptotic process in A431 keratinocytes exposed to UV-B, whereas DNA photodamage was slightly decreased. We conclude that the decrease of apoptotic cells in hairless mouse epidermis following topical retinoids and UV-B irradiation reflects a protection of the primary targets of UV-B (DNA) by a mechanism independent of the activation of retinoid nuclear receptors, rather than a direct inhibition of apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.