Abstract

Quantum cascade lasers combine desirable features, namely high optical power and compactness, as no other coherent source in the field of THz generation. While their maximum operating temperature is progressively increasing, getting close to the range accessible by Peltier cooling, their range of application is expanding into new fields, such us molecular spectroscopy and their use as local oscillators. These applications would benefit from the investigation and improvement of the laser coherence properties. In this contribution we report the exploitation of electro-optic coherent detection based on a near-IR frequency comb to measure the frequency noise of a free running 2.5 THz quantum cascade laser. An intrinsic linewidth quantum limit of ~230 Hz has been measured, in good agreement with the Schawlow-Townes theoretical prediction. The same detection scheme is then exploited to phase-lock the quantum cascade laser line to a multiple of the comb tooth spacing, while a second comb allows to precisely measure the THz frequency. Such a dual frequency comb experimental setup thus yields a narrow line THz emission traceable to a microwave frequency standard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call