Abstract
The evolution of device properties in memristor switching between high- and low-resistance states is critical for applications and is still highly subjected to significant ambiguity. Here, we present the dynamic state transition in a 2D Ruddlesden–Popper perovskite-based memristor device, measured via impedance spectroscopy. The spectral evolution of the transition exhibits a significant transformation of the low frequency arc to a negative capacitance arc, further decreasing the device resistance. The capacitance–frequency evolution of the device indicates that the appearance of the negative capacitance is intimately related to a slow kinetic phenomenon due to ionic migration and redistribution occurring at the perovskite/metal contact interface. In contrast, no negative capacitance arc is observed during the state transition of a memristor device where the contact is passivated by an undoped Spiro-OMeTAD interfacial layer. The switching mechanisms are entirely different, one due to interface transformation and the other due to filamentary formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.