Abstract
We investigate the real-space spectral properties of strongly-correlated multi-impurity arrays in the Kondo insulator regime. Employing a recently developed mapping onto an effective correlated cluster problem makes the problem accessible to the numerical renormalization group. The evolution of the spectrum as function of cluster size and cluster site is studied. We applied the extended Lieb-Mattis theorem to predict whether the spectral function must vanish at the Fermi energy developing a true pseudo-gap or whether the spectral function remains finite at $\w=0$. Our numerical renormalization group spectra confirm the predictions of the theorem and shows a metallic behavior at the surface of a cluster prevailing in arbitrary spatial dimensions. We present a conventional minimal extension of a particle-hole symmetric Anderson lattice model at $U=0$ that leads to a gapped bulk band but a surface band with mainly $f$-orbital character for weak and moderate hybridization strength. The change in the site-dependent spectra upon introducing a Kondo hole in the center of the cluster are presented as a function of the hole-orbital energy. In particular the spectral signatures across the Kosterlitz-Thouless type quantum phase transition from a singlet to a local moment fixed point are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.