Abstract

Let P and Q be ordinary differential operators of order n and m generated by s boundary conditions (where s = max{n, m}) on a bounded interval [a, b]. We study operators of the form L = JP + Q, where J is an involution operator in the space L2[a, b]. Three cases are considered, namely, n > m, n < m, and n = m, for which the concepts of regular, almost regular, and normal boundary conditions are defined. Theorems on an unconditional basis property and the completeness of the root functions of the operator L depending on the type of boundary conditions from the chosen classes are announced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.